Succeed at Vacuum System Troubleshooting

Succeed at Vacuum System Troubleshooting

Understand the causes of common problems and how to address them.

By Keith Webb, Tuthill Vacuum & Blower Systems

When the desired vacuum condition isn’t provided at a process plant, production often comes to a halt and all eyes become focused on the vacuum pump as the root cause of the problem. However, the vacuum pump usually isn’t culprit. In almost all cases, either: 1) the pump is being operated in a condition for which it never was intended, 2) one or more of the user’s interface points with the pump (suction/discharge lines, water supply, process contaminant, etc.) are being operated outside of design parameters, or 3) the vacuum chamber or vacuum lines were improperly specified. Each vacuum pumping technology will react differently to various conditions, so it’s not possible to offer a “one size fits all” answer to the problem. The following is a guide to systematically identifying the root cause of the most common problems and correcting them based on general vacuum system recommendations as well as technology-specific issues.

Let’s start by noting that vacuum technologies found at plants generally fall into two categories: wet and dry. The terms “wet” and “dry” refer to whether or not the user’s process gas comes into contact with a liquid as the gas passes through the vacuum pump. Wet technologies utilize a liquid to create a seal between the discharge and the suction of the pump to minimize the “slip” of gas backwards from the discharge to the suction and increase volumetric pumping efficiency. Dry technologies have no liquid contact with the process gas. Table 1 lists common vacuum equipment of both types.

 

 

General Recommendations

The following points apply to all vacuum systems regardless of pump type:

Vacuum leaks. All vacuum systems have some amount of air-in leakage, which may or may not be known at the time the vacuum pump is sized. Excessive system leaks result in reduced process gas pumping capacity because the pump must move not only the process gas from the vacuum chamber but also the air-in leakage. Leaks occur at the joints of the vacuum lines and at the vacuum chamber. To avoid excessive air-in leakage, bear in mind the general recommendations of operating pressure ranges for various piping materials and joining methods detailed in Table 2. Note that actual limits will depend upon the skill level of assembly personnel.

Vacuum pump or system problem? You must determine if the issue is caused by the pump or by other equipment in the vacuum system. To find out, mount an isolation valve and an accurate vacuum gauge in-line as near to the suction connection of the vacuum pump as possible. Close the isolation valve and then measure the ultimate vacuum (also called blank-off) performance of the pump. Compare the measured vacuum to the manufacturer’s published ultimate vacuum value. A value reasonably close to the published one indicates the issue stems from leaks or outgassing in the vacuum system.

 

 

Excessive pump discharge or backpressure. A vacuum pump is designed to discharge to atmospheric pressure or just slightly above unless the manufacturer specifically designates it a compressor. As the discharge pressure of the pump increases above atmospheric pressure, this raises the differential pressure across the pump, resulting in:
• higher pump temperature and possible overheating, leading to pump seizure; and
• increased current draw and subsequent overheating of the electric motor or an overload/fuse/breaker fault.

Improperly sized suction and discharge lines. Sizing of system piping significantly affects pump performance and should be performed by qualified vacuum engineers. However, to avoid problems, apply the following guidelines:
• Suction and discharge lines never should be smaller than the suction or discharge connection size on the vacuum pump.
• For every 50 ft of suction or discharge piping, increase the pipe size by one nominal pipe diameter. Example: A vacuum pump has a 2-in. inlet connection. The suction line between the pump and the vacuum chamber is to be 70 ft long. To avoid restrictions to gas flow and pumping performance issues, increase the vacuum line to 3 in.

Isolation of pumps operated in parallel. Many vacuum pump installations consist of multiple pumps operating in parallel and utilizing a common suction and discharge header. For these type of installations, isolate idle pumps from those in operation at the suction and discharge. Failure to isolate the offline pumps may result in: 1) discharge gas from the operating pumps entering an idle pump and contaminating it, and 2) creation of vacuum in the idle pump and a resulting liquid back-stream into the vacuum lines and chamber.
Now, let’s look at specific issues that might affect particular equipment.

Liquid Ring Pumps

Several possible operating conditions can cause insufficient vacuum in liquid ring (LR) pumps. The most common are:
• too high sealant vapor pressure;
• incorrect sealant flow rate; and
• process contamination of the sealant (in full sealant recovery systems).

Too high sealant vapor pressure. A LR pump utilizes a sealant. Most commonly this is water but other liquids may be used based on the specific application of the pump. Generally, the lower the temperature of the sealant, the lower its vapor pressure, which results in increased pumping capacity and deep vacuum performance. In addition, as the process vacuum level approaches the sealant’s vapor pressure, the sealant will begin to flash from the liquid to the vapor phase (cavitation), subsequently displacing the pump’s capacity. Utilize sealant temperature/capacity correction factors from the specified LR pump manufacturer to properly size the pump.

As a rule of thumb, to avoid pump cavitation select a sealant whose vapor pressure, Pv, at operating temperature is less than half of the required vacuum level, P1, as measured at the pump inlet. For instance, the Pv of water at 60°F (15°C) is 13.3 mm Hg absolute. Therefore, the lowest vacuum operating pressure for the pump would be:

P1 = (۲)(۱۳٫۳) = ۲۶٫۶ mm Hg

Operating the vacuum pump’s suction pressure below this level will result in cavitation of the water within the pump that ultimately can damage the pump’s impeller (Figure 1).

 

 

Water at too high a temperature supplied to the pump directly as sealant or indirectly as coolant to the heat exchanger of a full sealant recovery system will increase the sealant’s vapor pressure. As the vapor pressure increases, this value may approach the vacuum level of the pump and cause the sealant to flash and reduce the pumping capacity. In many cases, the use of cooling tower water in high ambient temperature climates (>95°F or 35°C) results in significant capacity reduction. Figure 2 illustrates the capacity reduction when operating a pump at 75 torr should water sealant become much hotter than the desired 60°F.

Incorrect sealant flow rate. Each model of a particular manufacturer’s LR pump has a specific sealant flow rate requirement to achieve the published vacuum performance. Regulate the sealant flow to within approximately ±۵% of the published requirement. Simple and inexpensive flow control devices are available to regulate this flow.

If too much sealant is fed to the vacuum pump, the volume of the liquid ring within the pump will increase. This will reduce the volume of the rotor available for the pump to move process gas and the pump will lose pumping capacity, resulting in a loss of vacuum.

If too little sealant is fed to the vacuum pump, the liquid ring volume will decrease. The liquid ring no longer will be able to create the necessary seal between the rotor and the housing, allowing internal “slip” of the discharge gas back to suction and resulting in reduced pumping capacity and loss of vacuum.

 

 

Process contamination of the sealant (in full sealant recovery systems). Such contamination can involve carryover of condensate or particulates.

During the process of moving gases from the vacuum chamber through the LR pump, the process gas will contact the sealant and subsequently may collect in the sealant. If the substance collects in the sealant liquid and has a vapor pressure higher than that of the sealant, it will enter the LR pump and flash from the liquid to the vapor phase, reducing the pump’s capacity. As an example, when using oil as the LR sealant, if water vapor is a carryover product from the process gas, the vapor will condense to liquid in the discharge separator tank and effectively increase the pump sealant vapor pressure and decrease capacity.

Carryover of particulates or other solids may clog sealant piping, strainers, heat exchangers, valves, etc., and restrict sealant flow to the vacuum pump, resulting in reduced pumping capacity and possible overheating of the LR pump.

Oil-Sealed Rotary Pumps

Some of the most common field issues experienced by oil-sealed rotary piston pumps and rotary vane pumps are:

• belt squeal/high amp draw at startup;
• inability of pump to blank-off/milky oil;
• back-streaming of oil into suction lines or vacuum chamber; and
• excessive oil mist discharge.

Belt squeal/high amp draw at startup. Belt squeal of a pump at startup can stem from: 1) improper belt tensioning, 2) cold oil temperature due to low ambient temperature, or 3) improper shutdown procedure.

Typically, a loose belt causes belt squeal. Check for looseness by starting the pump and observing the deflection of the belt during rotation. Do not apply belt dressing to V-belts such as those used on Tuthill vacuum pumps. If the belt appears to have excessive deflection, refer to the manufacturer’s product manual for proper tensioning instructions.

The next likely cause of belt squeal/high amps is attempting to start the pump in low ambient temperature conditions, typically <60°F (15°C). In this case, you must install oil preheaters to increase the oil’s temperature and reduce its viscosity so the internal components don’t create high torque on the shaft. It often makes sense to use a temperature switch to ensure the pump will not start until the heaters have raised the oil temperature enough.

Lastly, oil-sealed rotary piston pumps are particularly prone to improper shutdown. A pump shut down under vacuum will leave an excessive amount of oil in the cylinder. Then, when an operator attempts to start the pump, the cold viscous oil will create high torque on the pump shaft, resulting in high amp draw. Oil-sealed pumps require that the inlet pressure of the pump be increased sufficiently (typically >100 torr for no less than 15 sec.) to allow more gas flow through the cylinder of the pump, resulting in displacement of the oil in the cylinder back into the main oil reservoir.

 

 

Inability of pump to blank-off/“milky”oil. Oil-sealed vacuum pumps commonly fail to meet the published blank-off performance due to: 1) substitution of the manufacturer’s vacuum pump oil with an improper oil, or 2) condensable process vapors collecting in the oil.

Vacuum pump operators for various reasons may not use the manufacturer’s recommended oil. This often can result in failure to produce the deep vacuum results as published. Vacuum pump oils are formulated to have a vapor pressure significantly lower than the pump’s ultimate vacuum capability. If a higher vapor pressure oil is substituted, the pump will begin to create vacuum and reach the vapor pressure of the oil in the cylinder. When this occurs, the oil will flash to the vapor phase, displace the pump’s capacity and result in higher blank-off values. The only remedy is to use an oil that has a vapor pressure equal to or less than that of the manufacturer’s vacuum pump oil. Matching the recommended oil’s viscosity also is necessary.

Many processes such as vacuum drying contain moisture that will condense when it reaches the pump’s oil reservoir at atmospheric pressure. The visual result is “milky” oil. Typically, the liquid has a vapor pressure significantly higher than the pump’s ultimate pressure. As the condensed liquid is recirculated with the oil into the cylinder (under vacuum), it begins to flash to a vapor phase. This again results in a higher-than-published blank-off value. The solution is either to: 1) run the pump’s gas ballast valve open (off process) for 15–۳۰ minutes, allowing the incoming air to strip the moisture from the oil, or 2) change the oil more frequently. Note that failure to perform one of these procedures will result in excessive wear of the internals due to increased friction and heat and, thus, reduced pump life.

Back-streaming of oil into suction lines or vacuum chamber. This commonly stems from failure to vent the pump’s inlet prior to shutdown. As already noted, oil-sealed pumps require that the inlet pressure of the pump be increased sufficiently (typically >100 torr for no less than 15 sec.) to allow more gas flow through the cylinder of the pump, resulting in displacement of the oil in the cylinder back into the main oil reservoir.

Excessive oil mist discharge. This phenomenon typically occurs because: 1) the pump has been operated continuously at an inlet pressure greater than the manufacturer’s recommendation, or 2) the pump’s oil mist element has failed.

Oil-sealed pumps commonly are used to operate continuously at inlet pressures <10 Torr or for short pump-down cycles that don’t allow oil to saturate the pump’s oil coalescing element. If a pump is operated above the manufacturer’s recommended maximum for prolonged periods, the relatively high gas density will carry the oil into the mist element at rates beyond its maximum filtering capability. The result is oil discharge from the exhaust of the pump. The best way to avoid this situation is appropriate sizing of the pump for the system design to avoid high operating inlet pressures for prolonged periods.

The other possibility is that the pump’s oil mist element fibers have separated due to continuous saturation and high pressure differential, resulting in the escape of oil mist from the pump’s exhaust. Replacing the element commonly will solve the problem.

Dry Screw Pumps

The two most common issues related to the improper application or operation of dry screw vacuum pumps are:

• overheating and pump seizure; and
• high motor amp draw.

Note that while dry screw vacuum pumps all have some common features, the symptoms of each pump will be manufacturer and model specific.

Overheating and pump seizure. Dry screw vacuum pumps are susceptible to several potential causes of overheating. The more common are:
reduced cooling water flow/high cooling water temperature; high inlet gas temperature; and improper staging with a vacuum booster.

The dry screw pump is more sensitive to cooling water flow and temperature than other technologies. A reduction in cooling water flow rate below the manufacturer’s minimum recommendation or supply cooling water temperatures in excess of the manufacturer’s recommendation can result in thermal growth and, ultimately, seizure of the pump.

Because dry screw pumps have no internal liquids to absorb heat, their internal temperatures can range from 250°F to 450°F depending upon the screw design. So, they are sensitive to inlet gas temperatures; each pump has a manufacturer’s maximum inlet gas temperature rating. Unfortunately, this value sometimes isn’t considered during the selection process and, as a result, the pump might encounter entering gas temperatures that exceed this value, resulting in excessively high internal gas temperatures that cause thermal growth and subsequent pump seizure.

The sizing process of a pump with a vacuum booster requires consideration of several parameters. One of the most important when pairing a vacuum booster upstream of a dry screw pump is staging ratio. This is defined as the ratio of the volumetric flow rate of the vacuum booster, V1, to the volumetric flow rate, V2: SR = V1/V2. Applying Boyle’s Law: V1/V2 = P2/P1.

Because V1 always is greater than V2, the pressure between the booster and the dry screw pump, P2, always will be greater than the inlet pressure, P1, to the system. The gas compression across the booster results in a temperature rise of the gas that will enter the dry screw pump. Therefore, carefully consider this ratio to avoid exceeding the inlet gas temperature rating of the dry screw pump.

High motor amp draw. Many types of rotating machinery experience high motor amp draw. Usually the cause isn’t an issue with the motor but rather with the piece of equipment it is driving. In the case of dry screw pumps, high amp draw typically results from: excessive discharge pressure (as noted in the general section); process buildup in the machine; or internal contact due to the cooling water and inlet gas temperature noted above.

Excessive discharge pressure as well as cooling water and inlet gas temperature already have been addressed, so, let’s focus on process buildup in the machine. Many vacuum processes contain chemicals that combine at high temperatures to form sticky or tacky materials that attach and then “bake onto” the screws (Figure 3). Their buildup ultimately creates a “zero clearance” condition inside the pump. This contact within the pump leads to additional torque on the pump shaft, resulting in increased amp draw.

Consult the pump’s manufacturer for a recommended solution. Generally this will involve either: 1) knocking out or filtering the process gases upstream, or 2) supplying a cleaning flush. Option 1 is preferable in extending pump life. However, filtration units can be costly and will require continual maintenance. In addition, as the filter elements clog, a resulting loss of vacuum in the process chamber will occur.

The cleaning flush option avoids the cost of the filtration system but may pose its own operational issues that could result in damage to the pump. Moreover, there’s no guarantee of success with the flushing process. Proper choice of flushing medium is most important and requires determining whether a solvent is needed to dissolve material or if a mechanical cleaning fluid such as water will suffice; the pump manufacturer should approve the selection. When injecting a direct liquid flush into a dry screw pump, take care not to flood the pump’s screw chamber as this can result in the pump attempting to compress liquid and subsequent mechanical failure requiring a major rebuild of the machine. Lastly, when injecting a flushing liquid into the pump’s process chamber, elevate the pump’s inlet pressure sufficiently above the vapor pressure of the liquid to avoid flashing. Such flashing to vapor will compromise cleaning as well as potentially create freezing problems within the machine due to the Joule-Thompson effect.

Achieve Long-Term Success

The process of creating a successful vacuum installation consists of several steps:

• Determine the parameters of the entire cycle of the vacuum operation from startup to shutdown.
• Select the appropriate vacuum technology and material of construction to match the process vacuum and flow requirement and gases to be handled.
• Properly size the vacuum pumping equipment, vacuum chamber and suction and discharge lines.
• Commission and leak check the vacuum system and validate on the process.

The vacuum pumping technologies addressed in this article are time-proven and will give years of reliable service when appropriately applied and operated. However, when troubleshooting is required, the pointers provided here should help you properly diagnose and address issues.

Evolution Of The Laboratory Vacuum Pump

Evolution Of The Laboratory Vacuum Pump

If one studies the evolution of the laboratory pump over the past 25 years, it becomes apparent that this is an area of significant innovation, with important developments in high vacuum technology, corrosion resistance, vacuum control, and improvements in the efficiency and ecological impact of vacuum pumps.

JOHN BUIE

 

Vacuum pumps are an essential piece of equipment and used in a wide variety of processes in most laboratories. However, despite numerous advances over the past 70 years, many industry professionals still believe that vacuum technology has not progressed, and that there is no benefit from updating a laboratory pump.


۱۲۰۶
However, if one studies the evolution of the laboratory pump over the past 25 years, it becomes apparent that this is an area of significant innovation, with important developments in high vacuum technology, corrosion resistance, vacuum control, and improvements in the efficiency and ecological impact of vacuum pumps.

The suction pump, a predecessor to the vacuum pump, was invented by the Arabic engineer Al-Jazari. It was not until the fifteenth century that the suction pump first appeared in Europe.

۱۶۴۳

The first mercury barometer was invented by Evangelista Torricelli, based upon earlier work by Galileo. The first sustained vacuum was achieved later the same year.

۱۶۵۴

Otto von Guericke invented the first true vacuum pump, and used it to evacuate the air between two hemispheres in order to demonstrate that they could not then be separated by two teams of horses (the famous “Magdeburg hemispheres experiment”).

۱۸۵۵

Heinrich Geissler invented the mercury displacement pump and used it to achieve an unprecedented vacuum of around 10 Pa (0.1 Torr).

۱۸۷۴

A new style of pump consisting of vanes mounted to a rotor that turned within a cavity was patented by Charles C. Barnes of Sackville, New Brunswick, Canada. This type of pump became known as the rotary vacuum pump, and took depth of vacuum to a new level.

۱۹۱۱

Professor Dr. Wolfgang Gaede first reported the principle of the molecular drag pump at a meeting of the Physical Society in Karlsruhe. The pump was extremely well received and was considered to be the major event of the meeting. After many problems and setbacks, the first 14 pumps were ready for sale by the fall of 1912.

۱۹۱۵

Irving Langmuir invented the diffusion pump, using mercury as the pump fluid. The use of mercury enabled the pump to continue working at elevated temperatures, but was soon replaced due to its toxicity.

۱۹۲۰s

By the 1920s, the oil-sealed rotary vane mechanism was the typical design for most primary pumps.

۱۹۲۶

M. Siegbahn developed the first disk-type molecular drag pump.

۱۹۲۹

Kenneth Hickman developed synthetic oils with low vapor pressures. These would soon prove invaluable in gas diffusion pumps.

۱۹۳۰

Cecil R. Burch and Frank E. Bancroft filed for a patent for the gas diffusion pump using low-vapor pressure oils. The patent was granted in 1931.

۱۹۳۷

C.M. Van Alta developed the first diffusion pump with a capacity of greater than 100 liters/second. Also in this year, the multistage, self fractionating diffusion pump was invented by L. Malter.

۱۹۵۰s

In the late 1950s, researchers at Varian invented the ion pump in order to improve the life and performance of its own high-frequency microwave tubes used in radar technology. The ion pump was able to achieve an ultra-clean vacuum environment.

۱۹۵۳

Raymond Herb invented the first practical Getter-ion pump, which prevented the vacuum chamber from rusting through the use of titanium metal.

۱۹۵۴

The single-cell ionic pump was developed by A.M. Gurewitsch and W.F. Westendorf.

۱۹۵۵

R. Herb invented the orbiton pump with electron-impact Ti sublimation.

۱۹۵۷

Researchers at Varian invented the Nobel Vaclon pump, the first electronic device to operate without fluids or moving parts and be resistant to power failures. The all-electronic pump made surface science possible for the first time.

۱۹۵۸

Pfeiffer Hockvakuumtechnik GmbH system design. invented the turbomolecular pump, improving on the performance of diffusion pumps and Gaede’s molecular pump. Also in this year, Varian introduced the modern Vacsorb cryosorption pump.

۱۹۶۰

Varian introduced the Vaclon pump, the first pump able to operate at rates of 1,000 liters/sec.

۱۹۶۱

C. H. Kruger and A. H. Shapiro developed the statistical theory of turbo-molecular pumping that is still the basis of much research today.

۱۹۶۹

K.H. Mirgel developed the vertical unidirectional turbomolecular pump.

۱۹۷۱

Osaka Vacuum manufactured the first domestic turbomolecular pump for smallscale applications.

۱۹۷۲

Varian’s Vacuum Division introduced the contra-flow concept, allowing higher test port pressures by using a simplified vacuum system design.

۱۹۷۴

The first oil-free piston vacuum pump was developed by John L. Farrant.

۱۹۸۰

Osaka Vacuum Ltd. developed the compound molecular pump.

۱۹۸۲

VACUUBRAND introduced the first chemistry-design pump with a full fluoropolymer flow-path. This pump’s design allowed it to overcome the performance challenges of fluoropolymer flow under pressure.

۱۹۸۴

The Drystar dry (oil-free) vacuum pump was patented by Edwards High Vacuum Limited. The dry claw pump became essential to the semiconductor market.

۱۹۸۷

VACUUBRAND introduced the first microprocessor vacuum pump controller able to detect vapor pressures and adapt vacuum levels to changing solvent conditions.

۱۹۸۸

VACUUBRAND introduced the first lab vacuum pumps with integrated solvent vapor recovery. These pumps allowed users to capture and recycle waste vapors rather than exhaust them into the atmosphere.

۱۹۹۰

VACUUBRAND introduced the first dual-application chemistry vacuum pump, capable of electronically controlling one application while providing filtration vacuum to a second port.

۱۹۹۱

VACUUBRAND introduced the Chemistry-HYBRID pump that integrated both a rotary vane pump and diaphragm pump on a single shaft and motor. As solvent vapors from the pump oil were continuously distilled in this hybrid pump, oil changes were reduced by 90 percent compared with single rotary vane pumps.

۱۹۹۴

VACUUBRAND introduced the first local-area vacuum network, subsequently named VA CUU·LAN®, with integrated check valves and chemistry-resistant components. This network allowed up to eight different lab vacuum applications to be simultaneously operated by one pump. This approach became the norm in lab vacuum supply across Europe.

۱۹۹۶

VACUUBRAND introduced the PC 2001, the first frequency-controlled diaphragm vacuum pump. This pump allowed vapor pressures to be electronically detected and adapted in response to changing solvent conditions without programming. It was also able to operate hysteresis-free.

۱۹۹۸

Varian developed TriScroll® Dry Pump, the only two-stage vacuum pump on the market at the time. This pump employed a unique, patented TriScroll pumping capability.

۲۰۰۰

Pfeiffer Vacuum launched the vacuum DigiLine™— the first full line of digital vacuum gauges.

۲۰۰۲

VACUUBRAND introduced the MD1 VARIO -SP pump, the first fully integrated 24 VDC variable-speed diaphragm pump, offering new options for instrumentation designers.

Pfeiffer Vacuum brought a magnetically-coupled line of rotary vane pumps to the market.

۲۰۰۴

VACUUBRAND introduced its “XP-series” of compact rotary vane pumps. These pumps had one-third of the environmental impact of traditional belt drive pumps without sacrificing vacuum and pumping speed.

۲۰۰۷

VACUUBRAND introduced the Peltronic® condenser, the first electronically cooled condenser that allowed vacuum pump waste vapor recovery without an external coolant for the first time.

۲۰۰۸

Pfeiffer Vacuum launched the HiPaceTM, capable of operating at rates of 1,000 to 2,000 liters/second.

۲۰۰۹

VACUUBRAND introduced the VSP 3000, the first chemistry- and shock-resistant Pirani vacuum sensor. This pump allowed robust monitoring of rotary vacuum applications, with vacuum pressures down to 10-3 mbar.

KNF Lab launched the wireless SC920 series vacuum pump system, featuring fast and precise processing, quiet operation and easy regulation of all vacuums. The wireless remote control allowed users to locate the processing equipment away from the pump to save lab space, avoid needless opening of the fume hood and remove tangled cables.

The Future For Laboratory Vacuum Pumps

Innovation in vacuum technology is currently being driven by the many diverse manufacturing and research processes that rely on vacuum systems, particularly the manufacture of semiconductors. With increasing demand for reliable and efficient vacuum techniques, the rate of innovation looks likely to increase in the immediate future.

Experts predict that vacuum pumps of the future will offer greater reliability and be able to operate for longer periods of time before maintenance is required. Laboratory pumps are also expected to be smaller, more efficient, and generate less heat, noise and vibration. It is likely that they will also better resist corrosion and be easier to clean and repair.

Technological developments are likely to include higher shaft speeds and innovation in pumping mechanisms for improved performance. Vacuum pumps are also expected to incorporate novel materials and improved design to further improve performance and reduce operating costs.

 

۶ Questions You Should Ask When Buying a Vacuum Pump

Top 6 Questions You Should Ask When Buying a lab vacuum pump

۱٫ What will you be using the vacuum for? Filtration needs modest vacuum. Evaporation requires deeper vacuum. Molecular distillation requires even more. Match the pump to the use.

۲٫ Can you use a dry (oil-free) vacuum pump? Oil-free vacuum pumps can support most lab applications. For the service advantages, choose a dry pump where possible.

۳٫ What is the pumping capacity at the intended vacuum level? Actual pumping speed declines from the nominal speed as depth of vacuum increases. The rate of decline differs among pumps.

۴٫ Do you work with corrosive media? Standard duty pumps have lower purchase costs, but corrosion-resistant pumps will have lower lifetime costs if working with corrosives.

۵٫ Should you invest in vacuum control? Electronics can improve reproducibility, protect samples and shorten process times when specific vacuum conditions need to be maintained.

۶٫ What is the lifetime cost of operation? Include purchase cost, service intervals, servicing cost, pump protection (e.g., filters, cold traps), and staff time for operation.

Types of vacuum pumps our readers are using in their labs:

Rotary vane pump۱۶%
Dry diaphragm vacuum pump۳۷%
Water or air aspirator۳۶%
Deep vacuum pump۲۸%
Filtration pump۲۶%
Turbo Pump۲%
Other۳%

Vacuum pumps are suited for a wide variety of laboratory applications. Below are some of the applications the respondents use their vacuum pumps for in their labs:

Vacuum or pressure filtration۴۸%
Dry diaphragm vacuum pump۲۹%
Degassing۲۹%
Mass spectrometry۲۸%
Rotary evaporator۲۶%
Freeze drying۱۸%
Gel dryer۱۰%
Liquid aspiration۳%
Other۵%

The top 10 factors/features for our readers when they are buying a vacuum pump:

Most Important/ImportantNot ImportantDon’t Know
Durability/performance۹۶%۳%۱%
Price۹۲%۴%۴%
Ease of Use۹۱%۷%۲%
Leak-tightness۸۹%۸%۳%
Pump speed۸۵%۹%۶%
Warranties۸۵%۱۲%۳%
Safety and health features۸۲%۱۲%۶%
Low maintenance costs۸۱%۱۴%۵%
Availability of supplies
and accessories
۸۰%۱۶%۴%
Noise level—quiet۸۰%۱۷%۳%

Recently Released Vacuum Pumps

Proper Maintenance of OilSeal High Vacuum Pumps

Proper Maintenance of OilSeal High Vacuum Pumps
Practical, step-by-step instructions for oil changes and
power flushes
John L. Brock, Sales Engineer
Welch Vacuum Pumps, a Gardner Denver Product
Properly maintained vacuum pumps will provide many
years of reliable, maximized performance. This article
addresses simple ways to maintain such vacuum
pumps and options for what to do when pump
performance is compromised due to oil contamination
and degradation.
Principles of Operation
Oil-Seal, Rotary Vane vacuum pumps pull millitorr-level
vacuum (‘high vacuum”) by sweeping intake air and
vapors from the intake port around to the exhaust port.

Note in the diagram above how the rotor is offset in the
chamber, or “stator”. The rotor is set with only 1/1000”
clearance from the top of the stator. Vacuum pump oil
seals this tiny gap and prevents regurgitation of the
airflow. For this reason this technology is referred to as
“oil seal, rotary vane” vacuum pumps. Vacuum pump
oil also lubricates the vanes, which are spring loaded
so they always push to the inside wall of the stator,
allowing for very efficient sweeping action. In a “two
stage” pump, the exhaust from the first stage chamber
is fed into the intake of the second stage and lowers
the vacuum level achieved down to, or below, 1 millitorr
(۱ X 10-3 mm Hg) residual pressure.
When a vacuum pump is first evacuating, the oil vapor
pressure is high enough that a visible amount of oil

continued on page 2
continued on page 3

Vacuum Pump Technology

Vacuum Pumps and Blowers

Vacair Superstore offer the latest technology within the new Vacuum Pumps and Blowers sector, with vacuum and pressure being given as efficiently and economically as possible. We have over 20 years of dedicated proven supply to a vast array of vacuum pump applications within many industries. By choosing Vacair Superstore you will gain access to the widest choice of Vacuum Pumps from stock, for immediate delivery in the UK.

https://asiapumps.ir

Vacuum Pump Technology

Vacair Superstore provide you with the latest in vacuum pump technology including but not limited to:

Claw Pumps

Claw pumps are one of the latest technologies within vacuum pump and pressure pump technology. The working principle of this pump allows 2 claw shaped rotors to rotate in a synchronised way within a moulded cylinder body. They work with fine tolerances and because the unit claw used to generate the vacuum or pressure are contactless there is no need for lubrication within the cylinder body. Because of the lack of contact within the cylinder body they have a much longer life than traditional pumps and have very little need for maintenance over this extended life.

Applications include: Wood working, Printing, Cardboard Box Manufacture, Sewage Treatment, Pneumatic Conveying plus many others.

https://asiapumps.ir

Dry Running Rotary Vane Vacuum Pumps

These pump units have a rotor position eccentrically in a cylindrical body. The rotor is made with slots in it to house graphite pump vanes, more commonly knows as carbon pump vanes. The rotor is turned usually by a motor creating a centrifugal force which pushes the carbon pump vanes outwards from the slot to run against the cylinder body, which then creates separate chambers between each carbon pump vane.

Because the rotor is in an eccentric position within the cylinder body, as the rotor turns this then compresses or expands the volume of air in each chamber, meaning the pump unit draws air in from the inlet port and exhausts compressed air through the outlet port, thus creating vacuum and pressure.

The Carbon Pump Vanes that are used are self lubricating meaning there is no need for the unit to have a lubrication agent like oil so hence the unit is called a dry running vacuum pump.

Applications include: Woodworking, Pick and Place, Water Aeration, Sewage Treatment, Printing, Print Finishing plus many others.

https://asiapumps.ir

Oil Lubricated Rotary Vane Vacuum Pumps

Oil lubricated rotary vane vacuum pumps units work on very much the same principle as dry running rotary vane pumps. Except that the presence of oil as a lubricant enables finer tolerances in the vacuum pump, thus meaning higher levels of vacuum can be achieved, so these units are used when applications demand a higher level of vacuum.

Applications include: De-Gassing, Vacuum Bagging, Food packaging, Vacuum Forming, Hospital Vacuum, Laboratory, Autoclave plus many others.

https://asiapumps.ir

Side Channel Blowers

The operating principle behind Side channel blowers is simple. Internally the side channel blower has an impellor (fan) with small fins on it, the rotation of this impellor within the impellor housing (stator) creates a centrifugal force and this in turn creates small vortexes of air that are drawn by these fins from the intake to the exhaust. The unit is mechanically contactless meaning there are no parts that come into contact leading to the units themselves not requiring any routine maintenance. One of the major advantages to Side Channel Blowers are the units can run continuously when fitted with pressure or vacuum relief valves to protect the pump making them a robust unit that can deliver large volumes of air.

Applications include: Pneumatic Conveying, Vacuum Holding, Water Aeration, Sewage Treatment, Vacuum Lifting, Paper Handling plus many others.

https://asiapumps.ir

Invertor Driven Vacuum Pumps

Invertors can be fitted to several pumps to help with efficiency, as the pumps speed can be variably driven and worked in tandem with the machine it is serving. In today’s world where costs have to be examined, these variable speed units can play an important part in reducing energy consumption as the invertor driven units are super-efficient due to the ability to fine tune the speeds they work at.

Invertor driven vacuum pumps are used on dry running unit applications.

https://asiapumps.ir

Liquid Ring Pumps

Liquid Ring pumps have an impeller with fins attached to a central shaft, that is mounted eccentrically inside a cylinder body. The working principle is very much the same as rotary vane pumps for this reason. When working the impeller pushes the liquid sealant (water) to the outside of the cylinder body using centrifugal force, hence forming a liquid ring at the outer edge of the cylinder body.

Applications include: De-Gassing, Vacuum Forming, Extruding machines, Vacuum Holding, Pottery, Chemical/Pharmaceutical plus many others.

https://asiapumps.ir

The Leaders in Vacuum Pumps

We offer vacuum pumps from some of the world’s leading manufacturers such as Becker, Busch, DVP, Elmo Rietschle, Gardner Denver, Oerlikon Leybold, Orion plus many others but we also offer our own branded European made vacuum pumps too! This gives you the ultimate choice for your vacuum pump requirement.

Vacuum Expert Staff

By choosing Vacair Superstore you will also gain access to experienced and expert advice from our factory trained technical staff. They know everything about Vacuum and have experience of vacuum pumps working within many different industries requiring vacuum, from new projects to established common applications. So please call us on +44 (0) 113 2088 501 if you are unsure of your vacuum requirement or indeed which vacuum pump technology would best serve your application.

Accelerate Research by Tuning Up Vacuum-Driven Applications

Accelerate Research by Tuning Up Vacuum-Driven Applications

Medicinal Chemists, Organic Chemists, Biochemists,
Biologists, Molecular Biologists and other scientists rely
upon vacuum-driven devices to concentrate, dry, or
filter their materials.
If a Vacuum System is not performing optimally, it can
slow preparation of research-critical samples by as
much as 50%-100%! This can have significant impact
on time-to-market, or on research paper productivity.
Doesn’t it make sense to be certain that your Vacuum
Systems are operating at peak efficiency?
Vacuum System Audits
Welch Vacuum Pumps (a Gardner Denver Product)
provides a free service to its customers: the Vacuum
System Audit Program. This service is designed to
raise awareness on the importance of the subject, and
teach researchers the steps in the process. These
steps are also outlined below.

موتور وکیوم چیست ؟ | موتور وکیوم را بشناسید

پمپ وکیوم چیست؟

وکیوم یا خلاء به محیطی گفته می‌شود که فشار هوای آن محیط کمتر از فشار جو باشد.

پمپ وکیوم https://asiavacuumpumps.com
پمپ وکیوم چیست؟

منظور از وکیوم یا خلاء محیطی است که فشار هوای آن محیط کمتر از فشار جو باشد و براساس میزان فشار هوا به چهار گروه اصلی طبقه بندی می‌شوند:

  • وکیوم پایین
  • وکیوم متوسط
  • وکیوم بالا
  • وکیوم فوق بالا

اساس کار پمپ وکیوم

پمپ وکیوم‌های PVI از دو قسمت اصلی روتور ROTOR (شفت و پروانه) و بدنه (سیلندر و سر سیلندرها) تشکیل شده است که در عین مکانیسم عمل ساده از کیفیت بهروری بالائی برخوردار است.

جنس قطعات پمپ‌ها از کیفیت بالا و عملیات ماشینکاری آنها بر طبق استانداردهای ISO,DIN با دقت‌های در حد صدم میلیمتر صورت می‌گیرد که باعث حداقل نشت داخلی و افزایش راندمان دستگاه می‌شود.

هر دستگاه از لحاظ ظرفیت، فشار، میزان خلاء، مصرف قدرت و راندمان‌های مختلف آزمایش کامل می‌شود و کلیه قطعات در مراحل اقلام ورودی، ماشینکاری، ساخت، مونتاژ و تحویل نهائی ۱۰۰% توسط بخش Q.C کارخانه کنترل می‌شود.

مکانیسم عمل پمپ وکیوم

حرکت دورانی و خارج از مرکز پروانه حول محور پمپ وکیوم در داخل سیلندر محتوی آب سبب تشکیل رینگ آب می‌شود. در جهت دوران با ورود و خروج مداوم پره‌ها در داخل آب، حجم بسته فضای بین دو سرسیلندر، هر دو پره و جداره داخلی رینگ آب در یکطرف افزایش می‌یابد و عمل مکش صورت می‌گیرد و در طرف دیگر کاهش یافته ( ناحیه دهش ) و عمل تراکم انجام می‌پذیرد.

عمل خنک کردن پمپ وکیوم بوسیله آب انجام می‌شود و می‌توان از کندانس ذرات آب همراه هوای خروجی و برگشت آن به پمپ نیز استفاده کرد که در نتیجه خنک شدن پمپ و تثبیت درجه حرارت واکنش تراکم بصورت ایزوترمال انجام می‌شود.

وکیوم فرمینگ ورق ABS

وکیوم فرمینگ ورق ABS

وکیوم فرمینگ ورق ABS توسط شرکت وکیوم آرارت و هم چنین خدمات و مشاوره در امور بسته بندی وکیوم فرمینگ ، ساخت ورقABS  ، PP ، PVC و… ارائه می شود . در فرآیندهای قالب گیری ، تزریقی ، وکیوم فرمینگ ورق ABS و اکستروژن و… به طور گسترده از ورق ای بی اس استفاده می شود .

وکیوم فرمینگ ورق ABS

ورق ABS به دلیل داشتن ظاهر براق عامل اصلی استفاده از این مواد در وکیوم فرمینگ و ترموفرمینگ است . ورق ABS دارای خواص خوب مکانیکی ، مقاومت شیمیایی بالا و شکل پذیری راحت و آسان می باشد . یکی از مهم ترین و پر مصرف ترین کاربردهای ABS در صنعت خودروسازی ، الکتریکی و خانگی می باشد . در واقع ABS  نوعی ترپلیمر است که از آکریلو ، نیتریل ، استایرن و بوتادی ان تشکیل شده است .  در ابتدا باید با مشخصات ABS  یا مواد پلیمری اکریلونیتریل بوتادین استایرن آشنا شوید .

وکیوم فرمینگ ورق ABS

مشخصات ورقABS  یا مواد پلیمری اکریلونیتریل بوتادین استایرن

  • نام اصلی ماده : اکریلونیتریل بوتادین استایرین ( Acrylonitrile-butadiene-styrene )
  • نام تجاری ماده : ای بی اس ( ABS )
  • مواد  سازنده مرتبط :استایرن ، اکریلونیتریل ، پلی بوتادین
  • نحوه بسته بندی : کیسه های ۲۵ کیلوگرمی سه لایه از جنس پلی اتیلن با یک لایه مشکی رنگ

نحوه تولید ورق ABS

امروزه وکیوم فرمینگ ورقABS  با استفاده از روش های گوناگونی تولید و عرضه می شود . در روش اول با ترکیب کوپلیمر مکانیکی بوتا دی ان_اکریلونیترات BAN با کوپلیمر استایرن_اکریلونیترات SAN ورق ABS تولید می شود . نحوه ترکیب این مواد با یکدیگر باعث شده تولید پلیمر خواص برتر و مقاومت بیشتری نسبت به پلی استایرن داشته باشند .

خاصیت وکیوم فرمینگ ورق ABS

پارامتراستانداردواحدمقدار
استحکام کششیD 638Kg/cm2۴۸۰
درصد ازدیاد طولD 638%۲۵
مقاومت خمشیD 790Kg/cm2۶۹۰
مدول خمشیD 790Kg/cm2۲۳۰۰۰
سختیD 785R Scale۱۱۲
مقاومت ضربهD 265kj /m2۳۰
درصد آب گرفتگیD 755۰/۴-۰/۷
دمای کژ ریختگیD 648C۸۶
دانسیتهD 792g/cm3۱/۰۴
درصد جذب آبASTM D 570۰/۳

کاربرد ورق ABS

  • سقف کاذب
  • کیف های سامسونیت
  • نورگیر ساختمان
  • باجه های تلفن عمومی
  • دکوراسیون ادارات و منازل
  • بدنه داخلی یخچال ها
  • کاور دستگاه های صنعتی
  • گذرگاه های عابر پیاده
  • اسباب بازی های لوگو
  • وان و جکوزی
  • دیوارهای کاذب برای دفاتر کار و منازل
  • قطعات داخلی خودرو بدنه لوازم خانگی و چمدانها و کامپیوترها
  • تابلوهای اعلانات و نمایش

نکاتی در مورد بازیافت ورق ABS در ایران

حرارت دهی و خرد کردن یکی از اصلی ترین فرآیند های بازیافت ای بی اس می باشند . هم چنین تنظیم دما هنگام گرانول کردن برای جلوگیری از تخریب حرارتی و زرد شدن بسیار اهمیت دارد . پلی استایرن ممکن است آلودگی ایجاد کند و تاثیرات جبران ناپذیری بر روی مواد بازیافتی بگذارد . از روش الکتروستاتیک و کف شناوری در کشورهای دیگر برای انجام جداسازی استفاده می شود . در ایران با استفاده از بنزین و آب نمک این جداسازی انجام می شود .

معرفی آلیاژهای ورق ABS

  • آلیاژهای / PCABS : دارای مقاومت حرارتی ، ضربه ای و فرآیند پذیری بهبود یافته می باشد .
  • آلیاژ ABS / PVC : دارای مقاومت ضربه ای بهبود یافته می باشد .
  • آلیاژهای نایلون/ ABS : دارای مقاومت حرارتی و شیمیایی بهبود یافته می باشد .
  • آلیاژهای پلی سولفات / ABS : دارای مقاومت حرارتی و شیمیایی می باشد .

تولید ورق ABS و استفاده آن در بسته بندی وکیوم فرمینگ ورق ABS

ورق ABS با ضخامت مشخص تولید می شود . گرما در دستگاه وکیوم فرمینگ به ورق ای بی اس داده می شود ، سپس با استفاده از قالب وکیوم فرمینگ و خلاء ایجاد شده وکیوم فرمینگ ورق ABS  به عمل می رسد . ورق ABS در رنگ های متفاوتی از قبیل سفید برفی ، سفید آبی ، طوسی ، سیاه ، آبی ، قرمز و زرد تولید می شود .

با استفاده از اکسترودها ورق های ABS با کیفیت بالا تولید می شوند ، خاصیت این ورقه ها عبارتند از :

  • غیر رسمی می باشد .
  • دارای قابلیت ترموفرمینگ آسان
  • رنگ در برابر نور خورشید پایدار است
  • بازیافت آسان
  • اکستروژن یکنواخت
  • برخورداری از مقاومت شیمیایی خوب
  • برخورداری از خواص مکانیکی مناسب

محفظه خلأ ( مخزن وکیوم)

محفظه خلأ (Thermal Vacuum Chamber)

محفظه خلأ محیط بسته صلبی است که توسط پمپهایی مخصوص، هرگونه گاز و هوای موجود در آن تخلیه شده تا شرایط خلأ جهت انجام آزمایشهای فیزیکی را فراهم آورد. این شرایط جهت آزمایش عملکرد تجهیزات مختلف از جمله سنجندههای فضایی کاربرد دارد.

محفظه خلأ محیط بسته صلبی است که توسط پمپ هایی مخصوص، هرگونه گاز و هوای موجود در آن تخلیه شده تا شرایط خلأ جهت انجام آزمایشهای فیزیکی را فراهم آورد. این شرایط جهت آزمایش عملکرد تجهیزات مختلف از جمله سنجنده های فضایی کاربرد دارد. نمونه های این تجهیز که از جنس آلومینیوم ساخته شده باشند، اجازه کنترل شرایط مربوط به میدانهای مغناطیسی داخل محفظه را نیز برای کاربر فراهم می آورند. در مقابل نمونه های تولید شده از جنس استیل، از تاثیر هر گونه میدان مغناطیسی در داخل محفظه جلوگیری میکنند. همچنین در کاربردهای مربوط به آزمایشگاههای سنجش از دور، امکان کنترل شرایط دمایی محفظه نیز حائز اهمیت میباشد. در قسمتهای مختلف محفظه های خلأ، معمولاً چندین مجرای ورودی و خروجی تعبیه میشود تا امکان بررسی و آزمایشهای مورد نظر بر روی تجهیز واقع شده داخل محفظه را فراهم آورد.
https://vacuumpumps.ir/
محفظه خلا جهت تست سنجنده TIRS ماهواره LandSat 8
 •
https://vacuumpumps.ir/
                       محفظه خلا تست ماهواره CHEOPS آژانس فضایی اتحادیه اروپا
 •
بطور کلی میتوان گفت که محفظه های خلأ حرارتی که در کاربردهای کالیبراسیون سنجنده های فضایی، مورد استفاده قرار می-گیرند به منظور شبیه سازی شرایط خلأ و دمای فضا، پس از پرتاب سنجنده کاربرد دارند. با قرار دادن سنجنده در این محفظه و بررسی نحوه کارکرد آن، میتوان به پیش بینی مشکلات احتمالی و نحوه پاسخدهی آن در شرایط واقعی پی برد. برخی از نمونه های این تجهیز علاوه بر شرایط خلأ و دمای شبیه سازی شده، مجهز به موتورهای دورانی جهت شبیه سازی سرعت زاویه ای وارد به سنجنده نیز میباشند. هر محفظه با بهره گیری از سیستمهای پمپاژ، سیستمهای ترموکوپل و قرائت دقیق، امکان کنترل شرایط داخلی را فراهم میآورد. همچنین جهت کنترل دمای داخل محفظه از سیستم فریز کننده Polycold  و مجموعه از گرمساز ها استفاده میشود. به همراه این تجهیز، نرم افزار جانبی و سیستم کنترل نیز ارائه میشود.
 •
 https://vacuumpumps.ir/
برخی از مدل های محفظه خلا (بدنه مرکزی)
آدرس کوتاه شده: https://isa.ir/s/mfanh0

وکیوم فرمینگ ورق ABS

وکیوم فرمینگ ورق ABS

در مرحله اول با مشخصات کامل مواد پلیمری اکریلونیتریل بوتادین استایرین یا ABS آشنا می شویم.

یکی از مهم ترین و پر مصرفترین ترپلیمرهایی که به صورت تجاری تولید میشوند ABS͵ است که در صنایع خودروسازی،الکتریکی و خانگی کاربرد فراوان دارد.

یکی از مهم ترین و پر مصرفترین ترپلیمرهایی که به صورت تجاری تولید میشوند ABS͵ است  .این ترپلیمر که از سه جزئ آکریلو نیتریل و بوتادی ان و استایرن تشکیل شده است,با تغییر در درصد هر یک از مونومر ها می توان برای  کاربری خاص اصلاح کرد.البته باید در نظر داشت در صد بیشتر به پلی استایرن اختصاص دارد. این پلیمر  را میتوان در بدنه لوازم خانگی مثل: تلفن͵ جاروبرقی͵ چایی ساز و لولزم الکتریکی و قطعات خودرو… مشاهده کرد.
مشخصات مواد پلیمری اکریلونیتریل بوتادین استایرین یا ABS (وکیوم فرمینگ ورق ABS)
نام ماده (فارسی): اکریلونیتریل بوتادین استایرین
نام ماده (انگلیسی):Acrylonitrile-butadiene-styrene
نام تجاری (فارسی): ای بی اس
نام تجاری (انگلیسی):ABS
مواد مرتبط:استایرن ، اکریلونیتریل ، پلی بوتادین
مجتمع های تولیدکننده:پتروشیمی تبریز
محل تحویل : پتروشیمی تبریز
بسته بندی : کیسه های ۲۵ کیلوگرمی سه لایه از جنس پلی اتیلن با یک لایه مشکی رنگ

نحوه تولید ABS: (وکیوم فرمینگ ورق ABS)

ABS. به وسیله روش های گوناگونی قابل تهیه است. روش اول شامل مخلوط کردن کوپلیمر مکانیکی بوتا دی ان_اکریلونیترات (BAN) با کوپلیمر استایرن_اکریلونیترات (SAN) است. گوناگونی حالت ها در مخلوط کردن SAN با پلی بوتا دی ان است. معمولا کوپلیمریزاسیون استایرن و اکریلونیترات با ترکیب با پلی بوتا دی ان به دست می آید .هر کدام از روش ها منجر به تولید پلیمری میشود که خواص بسیار برتری نسبت به پلی استایرن با مقاومت ضربه ای بالا دارد.

کاربرد ABS: (وکیوم فرمینگ ورق ABS)

در بسیاری از کاربرد هاABS به وسیله تزریق͵ قالبگیری دمشی و اکستروژن

 تولید میشود.کاربرد اصلیABS در صنایع خودرو سازی و در ساخت قطعات بدنه خودرو است.

دیگر کابرد های عمده آن شامل لوله ها و اتصالات قطعات تزریقی مانند اسباب بازی های لوگو

تلفن ها ͵بدنه لوازم خانگی و  پوشش ابزار آلات الکتریکی دستی از دیگر کاربردهای این پلاستیک است.

اسباب بازی

نکاتی در مورد بازیافت این ماده در ایران: (وکیوم فرمینگ ورق ABS)

از اصلی ترین فرآیندهای بازیافت ABS͵حرارت دهی و خرد کردن است. هنگام گرانول کردن تنظیم دما  برای جلوگیری از تخریب حرارتی و زرد شدن بسیار مهم است.

یکی از اصلی ترین مشکلاتی که در بازیافتABS رخ میدهد ͵آلودگی از جانب پلی استایرن با مقاومت ضربه ای بالا یا های ایمپکت است که تاثیرات جدی  بر روی خواص مواد بازیافتی میگذارد. در ایران این جداسازی قبل از آسیاب کردن از طریق استفاده از بنزین صورت می گیرد که اگر حل کند های ایمپکت است و اگر حل نکند ABS می باشد.اگر این مخلوط با های ایمپکت به صورت آسیابی باشد از طریق آب نمک جداسازی صورت می گیرد .در دنیا برای تفکیک با دقت بالا از روش الکتروستاتیک و کف شناوری استفاده می گردد.

لوازم خانگی

آلیاژهای ABS: (وکیوم فرمینگ ورق ABS)

تعداد زیادی از آلیاژهای متداولABS عبارتند از: آلیاژهای /PCABS با مقاومت حرارتی͵ مقاومت ضربه ای و فرآیندپذیری بهبود یافته ;آلیاژ ABS/PVC با تاخیر اندازندگی شعله و مقاومت ضربه ای بهود یافته آلیاژهای نایلون/ ABS با مقاومت شیمیایی و حرارتی بهبود یافته و آلیاژهای پلی سولفات  ABS/ با سفتی محیطی و مقاومت حرارتی و شیمیایی.

آیا این پلیمر در پتروشیمی ها ی ایران تولید می شود؟

پتروشیمی قائد بصیر و پتروشیمی تبریز از تولید کنندگان این محصول در ایران می باشند.

‌ ABS در ۵۰ گرید تولید می گردد که گریدهای معمولی ، گریدهای مقاوم در برابر حرارت ،

ضد شعله و قابل آبکاری را شامل می شود و بسیاری از این ها در پتروشیمی قائد بصیر تولید می گردد.

تولید ورق ABS و استفاده آن در بسته بندی وکیوم فرمینگ ورق ABS (وکیوم فرمینگ ورق ABS)

مواداکریلونیتریل بوتادین استایرین یا ABS که به صورت گرانول در خط تولید ورق ABS قرار می گیرد و به صورت ورق با ضخامت مشخص تولید می شود
ورق تولید شده در دستگاه وکیوم فرمینگ که می تواند دستی یا اتوماتیک باشد قرار می گیرد و با گرمای دقیق و مشخصی که به آن داده می شود و با استفاده از قالب وکیوم فرمینگ و خلاء ایجاد شده وکیوم فرمینگ ورق ABS صورت می گیرد و به دلیل سختی و محکمی در بسته بندی وکیوم فرمینگ بیشتر برای ساخت استند های رومیزی استفاده می شود.
وکیوم فرمینگ میلاد تولید کننده انواع استند های رومیزی تبلیغاتی مختلف