Dry (Oil-less) Vacuum Pumps Rotary Claw – Piston – Screw – Vane

https://asiavacuumpumps.com

Dry Claw Vacuum Pumps

Air-cooled, compact and oil free, dry claw vacuum pumps are increasingly becoming the pump of choice for medium vacuum applications. Designed for long life and ease of maintenance these pumps exhibit modern design features such as corrosion resistance and modular configuration for easy disassembly and repair.

Typically applications include CNC routing, pneumatic conveying, milking parlors ans central hospital vacuum. VFD compatible

DRY CLAW PUMPS

https://asiavacuumpumps.com

Dry Piston Vacuum Pumps

Made for laboratory or office use, these pumps are small & compact. Operating on 115v power, these pumps can operate anywhere a power outlet is available.

Applications include medical, dental, biological filtration, chip mounting/holding, air sampling, packaging and others. Flow 4.5-11.6 cfm

DRY PISTON PUMPS

https://asiavacuumpumps.com

Dry Screw Vacuum Pumps

These pumps are made for process vacuum applications where heavy contaminated gas streams are present. The ability to pump heavy vapor loads and off pH gases at low pressures (<0.5mm Hg), these units are ideally suited for chemical and pharmaceutical processing, solvent reclamation, dehydration and crystallization.

Flow capacities up to 470 cfm

Innovative Vacuum and Leak Detection Solutions

Innovative Vacuum and Leak Detection Solutions

Agilent vacuum pumps, pumping systems, measurement instruments, components, and helium leak detectors allow you to create, measure, and maintain vacuum for your applications, processes, or research. Learn about Agilent’s clean, dry, quiet IDP scroll pumps, high performance, high compression TwisTorr turbo pumps, optimized, UHV/XHV ready ion pumps and controllers, and rugged, reliable helium leak detectors.

Agilent leverages its Varian Vacuum roots to fulfill your vacuum needs with product value and experienced, knowledgeable support. Agilent pumps, systems, and components enable advanced research in physics, analytical instrumentation, and nanotechnology, they are also a perfect fit for industrial processes.

Ion Pumps & Controllers

Ion Pumps and Control Units for Ultra High (UHV) and Extreme High Vacuum (XHV)

Turbo Pumps & Controllers

High Vacuum Turbo Pumps and Controllers for Optimal Vacuum Performance

Turbo Pumping Systems (TPS)

High Vacuum Turbo Pumping Systems to Optimize Vacuum in Your Laboratory or Plant

Diffusion Pumps

Oil Diffusion Vacuum Pumps for Demanding High Vacuum Applications

Dry Scroll Pumps

Clean, High Performance, Oil Free Scroll Pumps

Oil Sealed Rotary Vane Pumps

Mono and Dual Stage, Oil Sealed Rotary Vane Pumps for Broad Applications

Roots Pumps (RP) & Roots Pumping Systems (RPS)

Roots Pumps and Roots Pumping Systems to Boost Pump Down Speed

Helium Leak Detectors

Ensure Stability and Performance in Any Leak Detection Application

Vacuum Measurement

High Quality Gauges and Controllers for Accurate Vacuum Measurement

Vacuum Components

Reliable Components for your Vacuum Instruments

Vacuum & Leahttps://asiavacuumpumps.comk Detection Software

Vacuum and Leak Detection Software and App to Optimize Workflows

WHAT IS VACUUM MASS SPECTROMETRY?

WHAT IS VACUUM MASS SPECTROMETRY?

WHAT IS MASS SPECTROMETRY?

Mass spectrometry – an analytical technique that measures the mass-to-charge ratio of ions and, in forensic science, one of the best ways for toxicologists to identify and analyse substances.

In the forensic community, it’s heralded as the “gold standard” and the “near universal test” for isolating and assessing unknown agents. As a result, its widest application is in the analysis of drugs (including drug metabolites and drug paraphernalia).

THE HISTORY OF MASS SPECTROMETRY IN DRUGS AND TOXICOLOGY

Though mass spectrometers have been around for more than five decades, they remain the go-to for forensic analysis of drugs. According to the Office of Justice, drug identification remains the most frequently submitted evidence request to forensic laboratories, and mass spectrometers play a defining role in the process.

However, while mass spectrometers are widely used now, they have evolved considerably since their conception. In fact, it wasn’t until the 1950s and onwards that they really came into their own.

In the mid-1940s, mass spectrometers were far too big, expensive and difficult to operate. Some were customised to the extent operators had no idea how to use them and to make matters worse, some came with no guidance (manuals or instructions) whatsoever, making interpreting results difficult!

It wasn’t until the mid-1950s that some of these problems were resolved. In the 1950s, John H. Beynon and Fred W. McLafferty contributed to the launch of “organic mass spectrometry”, giving more guidance to users of the devices. Then in 1959 and onwards, Klaus Biemann and Carl Djerassi’s groups helped extend the capabilities of mass spectrometers, enabling them to analyse natural products and botanical extracts (including alkaloids, cannabis and cocaine).

Then, in 1968 R. J. Martin and T. G. Alexander utilised high resolution mass spectrometry (HRMS) and “cracking patterns” to help identify the hallucinogen dimethyltryptamine (DMT) in a casework sample. Analysing this problem would’ve required a major research project a few years ago – instead, it became a simple exercise problem.

By 1971, toxicologists and scientists were solving hundreds of overdose cases using gas chromatography mass spectrometry (GC-MS) and computer-assisted database searching. A group at the National Institute of Health had utilised this method – including analyses of blood serum and stomach contents – to rapidly scale the process.

A few years later (1973), a Swedish team developed a GC-MS assay for tetrahydrocannabinol in human blood that was sensitive enough to detect if someone had smoked “one half-billionth of a gram”. Mass spectrometry was evolving at an incredible rate.

Shortly after, in 1977, mass spectrometry data from the Environmental Protection Agency (EPA) was admitted as evidence in a case involving the detection of a pesticide in animal tissues. The following year a judge ruled to allow mass spectrometry test results as evidence in a capital murder case.

Fast-forward to today and mass spectrometry is widely regarded as the best available technology for the analysis of unknown agents – and dozens (between the 1940s and late 1970s) have contributed to the development of the technology – some of whom are not included in this blog.

THE HISTORY OF MASS SPECTROMETRY IN ARSON, GUNSHOT RESIDUE AND EXPLOSIVES

  • Arson

As well as drug identification, mass spectrometry is also used in cases where arson, gunshot residue and explosives are involved.

In 1959, Joseph Nicol – a firearms technician at the Chicago police crime lab – suggested that crime labs at large universities or oil companies could use the GC-MS tests for high-priority arson cases.

  • Gunshot residue (GSR) and explosives

The first tests used to determine whether or not someone had fired a gun by GSR was the “paraffin test”. This test involved pouring hot paraffin wax over a suspect’s hand and conducting a colour test on the cooled wax.

Needless to say, the test was both painful and unreliable, so alternative approaches – enter mass spectrometry – were developed, including neutron activation analysis (NAA), graphite furnace atomic absorption spectroscopy (GFA AS), GC-MS, inductively coupled plasma-MS (ICP-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS, and DESI MS/MS.

In the 1980s, GC-MS was acceptable to use in GSR cases, but the American Society for Testing and Materials (ASTM) developed a standard in 1994 that recommended scanning electron microscopy/energy dispersive x-ray spectroscopy (SEM-EDS) to determine the presence of lead, antimony and barium in the appropriate morphological particles. SEM-EDS remains the main choice for GSR.

To learn more about how vacuum technology is utilised in various fields such as medical equipment, transportation and space research, check out our guide to Vacuum Applications.

HOW MASS SPECTROMETRY IS USED FOR TRACE, FIBRES AND HAIR

The earliest applications of mass spectrometry in the analysis of trace, fibres and hair was limited in that it could only detect trace-level impurities. Due to the low concentration of inorganic elements in human hair, only the most abundant elements could be studied.

However, from the 1950s through the early 60s, spectroscopic methods like flame atomic absorption (FAA) enabled the detection of abundant metals like iron, copper and even mercury and lead in cases of poisoning.

Ion microprobe mass spectrometry (IMSS), was found to be the next reliable approach, but its application to human hair ultimately failed to meet the criteria of the time because 1) it had not acquired acceptance in the scientific community and 2) the results were not sufficiently reliable or accurate.

Next came the introduction of pyrolysis mass spectrometry (Py-MS). Pyrolysis-GC-MS (Pyr-GC-MS) was introduced to the forensic community by Saferstein et al. and Hughes et al. in their 1977 studies on man-made fibres and polymers. In fact, Pyr-GC-MS is still commonly used in today’s trace labs to study fibres and polymers – testament to its accuracy and efficacy.

THE FUTURE OF MASS SPECTROMETRY

Mass spectrometry has a rich and interesting history – particularly in the legal/forensics community where it has been able to provide some of the most reliable evidence in cases. Mass spectrometry has evolved considerably over the years and will no doubt continue to advance.

The trend today is to offer standardised procedures and solutions in instruments that deliver robust results. The operators of the mass spectrometers then do not require a scientific education but deliver data that cannot be interpreted differently in legal courses.

WHAT ARE VACUUM THIN FILMS?

WHAT ARE VACUUM THIN FILMS?

WHAT ARE THIN FILMS? 

Thin Films are layers of material on surfaces with a thickness well below a nanometer up to a micrometer. There are multiple reasons to coat a device with a thin film. These can be protective films to prevent corrosion, decorative layers on jewellery or bathroom fittings, wear protection on tools, multiple layers to improve optical properties on optics, in semiconductor or solar cell production. Many products in our daily use have coatings. Examples are smartphones and packaging foils for food; thin film technology in the automotive industry includes applications like coated reflectors in head lights and head-up displays.

Thin film coating uses several vacuum technologies like evaporation or sputtering. Both require pressures in high vacuum. Devices range from small laboratory coaters for film development to large machines for architectural glass coating.

To learn more about how vacuum technology is utilised in various fields such as medical equipment, transportation and space research, check out our guide to Vacuum Applications.

WHAT TO EXPECT FROM THE CONFERENCE

This international conference covers significant areas of vacuum technology. Topics will be

  • Applied Surface Science
  • Biointerfaces
  • Plasma Science & Technique
  • Surface Engineering
  • Surface Science
  • Thin Films
  • Vacuum Science & Technique
  • Electronic Materials and Processing
  • Nanometer Structures

شرایط نگهداری پمپ وکیوم روتاری روغنی

شرایط نگهداری پمپ وکیوم روتاری روغنی

بازرسی پمپ وکیوم پره روتاری  روغنی

۱-سطح روغن پمپ را بررسی کنید
۲-نشت روغن در کاسه نمد شافت جلو را بررسی کنید:
۳-نشت روغن بین محفظه روغن و محفظه اتصال را بررسی کنید
۴-فیلترهای روغن و اگزوز را بررسی کنید
۴-نوع روغن را مشخص کنید
۵-دمای فیلتر روغن را با دمای پوشش پمپ مقایسه کنید
۶-شرایط روغن را بررسی کنید (نمودار فقط مربوط به هیدروکربن است) وقتی روغن یک رنگ چای تیره است ، تغییر روغن لازم است (شماره ۴ – تصویر بالا را ببینید)
۷-کوپلینگ موتور را برای وجود صداهای بررسی کنید
۸-پروانه فن موتور و فن های خنک کننده را بررسی کنید
۹-فیلتر روغن را از نظر نشتی بررسی کنید
۱۰-پمپ را برای نصب سطح بررسی کنید
۱۱-فیلترهای اگزوز را بررسی کنید
۱۲-عملکرد بالست گاز / فیلتر بالاست گاز تمیز را بررسی کنید
۱۳-دام آلودگی تمیز
۱۴-عملکرد شیر برگشتی ضد مکش را بررسی کنید
۱۵-دمای پمپ را در ناحیه شیشه مشاهده کنید
۱۶-تمام واشرهای تخت را روی شاخه های تخلیه / پر کردن بصری بازرسی کنید
۱۷-شیر شناور را چک کنید (در صورت وجود)
۱۸-تسمه های محرک را از نظر سایش ، کشش بررسی کنید
۱۹-آب خنک کننده را بررسی کنید (در صورت وجود)
۲۰-مبدل حرارتی / پمپ را از نظر نشت آب بررسی کنید (در صورت وجود)
۲۱-خواندن دما را در شیر حرارتی بررسی کنید
۲۲-تمیز کردن رادیاتور / جریان هوا را بررسی کنید
۲۳-تمیزکاری محلی که پمپ در آن استفاده می شود را بصری بررسی و ثبت کنید
برای کسب راهنمایی بیشتر در مورد کار با پمپ های چرخشی

۰۲۱-۶۶۷۹۱۷۷۵

۰۲۱-۶۶۷۹۱۷۷۶

چگونگی تکامل علم وکیوم(خلا)

چگونگی تکامل علم وکیوم(خلا)

تکامل علم خلاuum که از قرن هفدهم آغاز شد ، بسیاری از دستاوردهای علمی دیگر را منعکس کرده است ، از جمله توسعه قوانین گاز و کشف الکترون. با این وجود ، دنیای وکیوم هنوز هم مهندسان و دانشمندان را هیجان زده و جلب می کند. در واقع ، تحولات اساسی همچنان مرزهای این موضوع جذاب را تحت فشار قرار می دهند.

فیزیک خلاuum – اصطلاحات اساسی
واحدهای فشار

واحد فشار خلاuum چیست؟

در زیر یک نمای کلی از واحدهای اصلی فشار و تبدیل واحدهای فشار آورده شده است:
واحدهای فشار و تبدیل ها

 

محدوده های خلاAC

در علوم خلاuum تقسیم دامنه فشار به پنج رژیم فردی معمول است:

خلا R خشن (یا کم) (R): جوی تا ۱ mbar

خلا متوسط ​​(یا خوب) (MV): 1 تا ۱۰–۳ mbar

خلا High زیاد (HV): 10–۳ تا ۱۰–۷ mbar

خلاuum فوق العاده زیاد (UHV): 10–۷ تا ۱۰–۱۲ mbar

خلا High شدید (XHV): بیش از ۱۰-۱۲ mbar.

این تقسیم بندی ها تا حدودی خودسرانه است ، و رشته های مختلف مهندسی از تعاریف خاص خود استفاده می کنند ، یعنی شیمی دانان اغلب از طیف مورد علاقه خود (۱۰۰ تا ۱ mbar) به عنوان “خلا inter میانی” یاد می کنند ، در حالی که برخی از مهندسان ممکن است خلا را “کم فشار “یا” فشار منفی “.

 

انواع جریان
فناوری خلاuum معمولاً با سه نوع جریان همراه است: جریان ویسکوز یا پیوسته. جریان مولکولی و یک محدوده انتقالی بین این دو معروف به جریان Knudsen.

جریان ویسکوز (یا پیوسته) در محدوده خلا rough خشن یافت می شود و با تعامل نزدیک مولکول ها تعیین می شود. سه زیرشاخه جریان چسبناک وجود دارد: “جریان آشفته” (اگر حرکت گرداب در روند جریان ظاهر شود) ؛ “جریان پوزویل” که در آن لایه ها روی یکدیگر می کشند (که این اغلب در خلا ها وجود دارد). و “جریان خفه” که هنگام تخلیه مخازن خلاuum یا در صورت نشت وجود دارد.

وقتی مولکولها بتوانند آزادانه حرکت کنند ، بدون هیچ گونه تداخل متقابل ، جریان مولکولی در خلاuum زیاد و فوق العاده زیاد (UHV) غالب است. جریان مولکولی در جایی وجود دارد که میانگین مسیر آزاد یک مولکول ƛ تعریف شده به عنوان میانگین مسافت طی شده توسط مولکول ها بین برخوردها) بسیار بزرگتر از قطر لوله است.

جریان نودسن محدوده انتقالی بین جریان چسبناک و مولکولی است. این در محدوده خلا متوسط ​​است که در آن طول مسیر آزاد یک مولکول مشابه قطر لوله است.

نمودار جریان در خلا

در جریان چسبناک ، حرکت ترجیحی مولکول های گاز یکسان با جهت ماکروسکوپی جریان گاز خواهد بود ، زیرا ذرات به طور فشرده بسته بندی شده اند و بسیار بیشتر از دیواره های مرزی با یکدیگر برخورد می کنند. با این حال ، در جریان مولکولی ، ذراتی که با دیواره ها برخورد می کنند غالب هستند.

در خلاuهای خشن ، برخورد ذرات گاز غالباً اتفاق می افتد ، در حالی که در خلا vacهای زیاد و بسیار زیاد ، برخورد ذرات گاز با دیواره های ظرف غالب است.

 

رفتار
تمام اتصالات بین مصرف سیستم پمپ و محفظه منجر به کاهش سرعت پمپاژ می شود. جریان pV از طریق هر عنصر لوله کشی مورد نظر ، مانند لوله یا شیلنگ ، دریچه ها ، نازل ها ، دهانه های دیواره بین دو رگ و غیره ، با

جریان سرعت پمپاژ از طریق معادله

در اینجا Δp = (p1 – p2) دیفرانسیل فشار بین انتهای ورودی و خروجی عنصر لوله کشی است. ضریب تناسب C به عنوان مقدار رسانایی یا به سادگی “رسانایی” تعیین می شود. در محدوده جریان مولکولی ، C یک ثابت است که مستقل از فشار است. در محدوده جریان انتقالی و چسبناک ، برعکس ، به فشار بستگی دارد. در نتیجه ، محاسبه C برای عناصر لوله کشی باید به طور جداگانه برای محدوده فشار فردی انجام شود.

از معادله فوق اغلب به عنوان “قانون اهم برای فناوری خلا” یاد می شود که در آن qpV با جریان ، Δp ولتاژ و C با مقدار هدایت الکتریکی مطابقت دارد. مشابه قانون اهم در علم الکتریسیته ، مقاومت در برابر جریان

به عنوان مقدار متقابل ارزش هدایت معرفی شده است:

عکس – ۷

بنابراین می توان معادله را به صورت زیر نوشت:

جریان سرعت پمپاژ از طریق معادله

اگر اجزا به طور موازی به هم متصل شوند ، موارد زیر اعمال می شود:

عکس – ۹

برای اجزای متصل به صورت سری موارد زیر اعمال می شود:

عکس – ۱۰

 

محدوده های فشار استفاده شده در فن آوری خلاAC و مشخصات آنها
دامنه های فشار مورد استفاده در فناوری خلا و خصوصیات آنها

 

برای اطلاعات بیشتر در مورد ویژگی های مختلف ، روی لینک زیر کلیک کنید تا کتاب الکترونیکی ما را بارگیری کنید:

کتاب اصول تولید خلا generation
تولید خلاuum
پارامترهای پمپ
سرعت پمپاژ
معادله سرعت پمپاژ (جریان میزان ولتاژ) در سیستم خلاuum

سرعت جریان حجم (qV) یا سرعت پمپاژ (S) سرعت جریان حجمی حجم (خالص) یا حجم گاز تخلیه شده در واحد زمان (m3 / s ، l / s ، cfm ، m3 / h…) است. این در ورودی پمپ اندازه گیری می شود و به گونه های گاز ، بخار و غیره بستگی دارد.

 

توان پمپ
ظرفیت پمپاژ (توان خروجی) برای پمپ برابر است با جریان جرم از طریق پورت ورودی پمپ:

How do you define a vacuum system?

How do you define a vacuum system?

In basic terms the pressure of a gas is provided by the physical presence (and the movement) of molecules. By reducing the number of molecules and/or their natural tendency to move, the pressure of a gas is reduced. For this explanation, any pressure that is less than normal atmospheric pressure is indicative of a vacuum.

In the world of vacuums, there are significant differences between those at the lower end of the spectrum and those that occupy the higher (i.e. high vacuum) levels. In terms of definitions: vacuums that range between atmospheric pressure and 1 mbar are known as “rough” vacuums, whilst pressures from 1 to 10-3 mbar are known as medium vacuums. Thereafter, the vacuum definitions progress from high to ultra-high vacuums (UHVs) through to extremely high vacuums (XHVs) and range from 10-3 to 10-12 mbar.

How to choose the right vacuum pump for your application

Choosing the right vacuum pump is not an easy undertaking. However, before embarking upon the vacuum simulation process, there is a fundamental truth which needs to be accepted: no single pump will match all your requirements or expectations. Nevertheless, the process (should) start with a clear view of the vacuum range you are trying to obtain, as well as the use to which the vacuum will be put (which in itself will provide an indication of the capacities required). From this basic bedrock of requirements stretches out a further series of “stepping stones” (some significant, others less so) including noise and vibration considerations, ease of maintenance, up-front and on-going costs, the size (i.e. footprint) of the pump itself, its resistance to shock, tolerance to particle intrusion and whether oil contamination would be an issue. By scrutinising this menu of requirements and restrictions, the vacuum engineer ought to be able to hone-in onto the most suitable vacuum pump for the task in hand.

There are a large number of vacuum pumps which cater for the lower (i.e. rough and medium) vacuum range, including the diaphragm pump at one end of the spectrum through to the screw, rotary and roots pumps at the medium vacuum end.

The types of pumps employed for rough and medium vacuums (when compared to high through to XHV pumps) are fairly simple in terms of the vacuum system operation. However, that is not to underestimate the precise engineering required (or indeed the science) behind their workings. Furthermore, it should not be forgotten that many of these pumps are employed as fore (or backing) pumps, which are employed to “charge” higher level vacuum pumps. Without the benefit of such fore-pumps, these higher vacuum units would at best – operate sluggishly and slowly, and at worst – not at all.

Diaphragm pumps, which operate from 103 to 1 mbar, employ a rod which oscillates backwards and forwards compressing the gas contained within a flexible pipe/chamber. This oscillation activates (alternatively) either an inlet or an exit valve.

Diaphragm pump

 

Roots pumps employ two counter-rotating, interconnecting units rotating within a chamber. Gas enters through the intake flange and is “pinched” between the two rapidly rotating units and the chamber wall, and is then expelled through the exhaust port.

 

Roots booster pump

 

Scroll pumps use two inter-wound Archimedean spiral-shaped scrolls (one fixed, whilst the other orbits eccentrically) to pump or compress liquids/gases. Scroll pumps are used where clean, dry vacuum pumping is required.

 

Scroll pump cross section

 

Rotary vane pumps work in the following manner: an offset rotor (fitted with vanes that slide in and out of their housing) rotates within a chamber. The vanes, which seal against the inside of the circular chamber, “trap” in a quantity of gas which enters through an inlet port. As the rotor rotates, the volume contained between the vanes and the inside surface of the chamber decreases, so the pressure of the “captured” gas likewise decreases, until it exits through the outlet port.

 

Rotary van pump

 

Screw pumps employ two screw rotors which are engineered to rotate “in on each other”, thereby trapping the gas in the void between the “screws” of their rotors. As they rotate, the void between the screws decreases which not only compresses the gas, but also forces it towards the exit portal.

 

Multistage roots pump

 

 

High & Extremely-High Vacuum Pumps

The high-vacuum, UHV and XHV range of pumps are by-and-large dominated by four completely different genres: the turbomolecular pump, the ion getter pump, the cryo pump and the diffusion pump.

Turbomolecular pumps use a very fast spinning rotor not dissimilar to a multi-bladed turbine. The high-speed impact of blades directly onto gas molecules “directs” these molecules towards the “exit” part of the chamber.

 

turbomolecular pump

 

Ion getter pumps are effectively repeat units of penning cells sustaining a plasma discharge. Once initiated the discharge. A high potential accelerates the electron toward an anode, but a high magnetic field causes a spiral motion. A dense electron cloud becomes trapped in the anode cylinder. Many ionizing collisions occur with gas molecules. The positive ions are attracted toward the cathode where they can become embedded and causes a sputtering of titanium from the cathode. This active layer pumps molecules by gettering.

 

IZ_GAMMA_3 cropped-1

 

Cryo pumps either condense or absorb gases within a three-stage, but two-part vacuum chamber; there are no moving parts. The vacuum is acquired using low-temperatures, provided by a dual-stage cold head. The two functions (condensation and adsorption) operate in parallel.

Diffusion pumps use a directed high speed vapour jet to direct gas molecules in the pump throat down into the bottom of the pump and out to the exhaust. They were named because the design was based on the fact that gas cannot diffuse against the vapor jet, but will be carried with it to the exhaust.

diffusion pumps

Interested in learning more about the different vacuum pumping technologies? Then why not download our eBook:

 

 

Vacuum System Simulation & Design

Choosing the right vacuum pump, may seem like a daunting (long-winded and costly) exercise–which is where engineering simulation comes in. By putting values to each uncertainty and sign-posting every decision node, simulation has taken much of the wasteful cost and iterative guesswork out of what has traditionally been the tortuous process of vacuum pump and vacuum simulation.

Engineering simulation (or modelling) is a well-established practice and methodology whereby a substitute for physical experimentation is created, allowing mathematical values to be calculated and then employed to describe how a system and/or a process may (or may not) perform.

This table-top, computer assisted exercise is conducted before any components are purchased, and before the system/process path and sequence have been confirmed. In its simplest terms, simulation/modelling can identify problems and anomalies in the design stage, thus eliminating the orthodox but out-dated and wasteful “design-build-test-redesign” cycle.

The technical characteristics of the various components of a system (that may be employed) are put together into a “trial” system, and a simulated performance is then computer-run to ascertain a number of parameters, including whether: the components are compatible; the system produces the required outcome; the entity operates safely; the results are reliable/repeatable; and if component substitution could produce better results. Furthermore, simulation can highlight any weaknesses (either in components or configurations), as well as providing an indication of any process/system.

 

The Challenges & Implications of Vacuum Simulation and Operation

The major advantage of engineering simulation is that all this (pre-work) can be carried out without having to go to the expense of actually purchasing expensive components (which may prove to be unsuitable or redundant) or, indeed, having to engineer/assemble the system at this embryonic stage.

It must be appreciated that vacuum simulation is not without its drawbacks.

Vacuum simulation calculations assume that the system is in a steady state. However, whilst such steady state simulation is fast, stable and accurate for simple system models, it fails to account for the misconception that throughput is in fact not constant throughout the system. In simple cases this disparity creates an acceptably small error, but in more complex systems, the error can be significant. Additionally, such “steady state models” are not suitable for systems with dynamic pumps, or for primary pumps/secondary booster combinations, which slow down at high-inlet pressures.

Furthermore, it must be appreciated that, as with many procedures, there is never a true substitute for “the real thing”. Whilst simulation will – at the very least- “shave off” some of the imperfections of a system or poor/incompatible item choices, there is really no cast iron guarantee that additional refinements or re-engineering of components and processes will not further perfect the final system.

Need help with your vacuum simulation project? Get in touch with our experts today for a free no-obligation consultation:

 

 

Vacuum Simulation Tools

There are a number of specialist simulation software tools available to the vacuum fraternity.

PumpCalc is a simulation package for “simple systems” (i.e. those that consist of a chamber, a foreline and a pump set), with the “pressure” time from pump output to the chamber being small enough so that speed and conductance are approximately constant. Whilst PumpCalc is best suited for simple systems, it can still be used on more complex systems, if symmetry can be used to simplify the entirety.

TransCalc is a network-based computational simulation software package for the design of vacuum systems. TransCalc is based upon duct-flow prediction techniques which provide a solution across all pressure ranges (including turbulent, compressable and transitional flow). Compared to steady-state models, TransCalc uses fewer primary assumptions about the system, calculates pipe flows based on whole-system throughput and, furthermore, modifies pressures by conserving throughput over a short time interval.

Pascal is a smart simulation tool enables the engineering of a flow-optimisation pump system using empirical data gained from existing pumps, which is coupled with data from the components required to complete the vacuum system, and then through simulation allows the study of three-dimensional molecular flow through the whole unit. Then, by using existing CAD data the simulation software can calculate the characteristics of the entire vacuum system, allowing flow engineering to be optimised.

Pascal simulation software

MolFlow is a Monte-Carlo simulator package developed at CERN, which provides insight into the behaviour of vacuum systems. MolFlow can show the distribution of the number of gas bounces, the flight distance and the flight time of test particles.

VacSim is a PC-based software simulation package which uses the hermetic capture of a vacuum system and is able to predict/calculate how the system pressure varies with time, throughput volumes, pump speed and oil back-streaming. VacSim is able to produce pump-down curves, show the impact of bakeout regimes, illustrate the impact of (construction) material and demonstrate what difference a pump change will make.

VacSim is perhaps not as sophisticated as some vacuum simulation packages but makes up for this by its inherent simplicity and its ease-of-use.

COMSOL can trace its development from 1986 at the Royal Institute of Technology in Stockholm, Sweden. It is used for vacuum system simulation including those used in semi-conductor processing, particle acceleration and mass spectrometers. Small channel applications (such as shale gas exploration and gas flow in nano-porous materials) can also be simulated.

ANSYS is a stress analysis CAD-type finite element (FE) analysis software package that provides a multi-coloured graphic image that can assist in the balancing of rotors, seismic simulation, model analysis, non-linear stress (i.e. creep and/or fatigue modelling), all of which are important in ensuring product reliability and safety. In addition to traditional stress analysis, ANSYS also has a thermal capability that provides a visual model of thermal distortion in pump components, evaluates cooling (thus highlighting cool spots which can lead to condensation), and enables multi-physics modelling (by coupling stress and magnetic analysis).

VACUUM APPLICATIONS: A KALEIDOSCOPE OF POSSIBILITIES

With the development of more sophisticated pumps capable of producing ever higher vacuum, the uses to which vacuums are being put have mushroomed, and now encompass a wide range from scientific research to food technology to semiconductor fabrication.

R&D is a significant “client” for vacuum technology, of which the most exciting involves the study of particle physics, conducted in particle accelerators (or colliders). These machines use huge electromagnetic fields to accelerate protons to velocities approaching the speed of light, focused into a fine beam, and then monitored from their collision with other particles.

The world’s most powerful particle accelerator, the Large Hadron Collider, is run by Conseil Européen pour la Recherche Nucléaire (CERN), and occurs within a series of tunnels that cross the border of France and Switzerland. High-speed beams of protons are channelled into a detection chamber where they collide with a proton “cloud” contained within an ultra-high vacuum. The resulting “exotic matter” that spills out of such collisions are short-lived but, nevertheless, the decay products can reveal the sub-atomic building blocks that control almost everything in our Universe…but none of this would be possible without the ability to create (and control) an ultra-high vacuum.

Large Hadron Collider (LHC) ultra-high vacuum tubeshttps://vacuumpumps.ir

 

Nuclear fusion occurs when two atoms combine to form a new atom, with the spare neutron that is “left over” providing energy that can be harvested for re-use. To get such atoms to combine (and release their spare energy) they need to be fired into plasma where temperatures of approximately 150 million°C overcome ion-repulsion and force them together. However, the machinery and knowledge associated with vacuum technology have only recently become available to elevate fusion to possible viability.

Whilst this fusion process occurs naturally in the sun, here on Earth, it must take place within a vessel using large-scale systems that ensure ultra-high vacuums in the reactor’s large vessel and the cryogenic system surrounding the superconducting magnetic field coils. In order to investigate and build a prototype fusion reactor, the International Thermonuclear Experimental Reactor (ITER) consortium was established to prove the feasibility of fusion as a large-scale and carbon-free source of energy.

 

International Thermonuclearhttps://vacuumpumps.ir Experimental Reactor (ITER) cross section

Source: ITER

 

Space Research

Vacuum science has been integral to major scientific advancements, including those associated with space research (and in particular, the detection of gravitational waves and black holes), by employing ultra high vacuum (UHV) levels.

Gravitational waves are ripples in space-time that are caused by violent processes such as exploding stars, collisions between neutron stars or the merging of black holes.

In order for gravitational waves to be detected in an interferometer (consisting of light storage arms), UHV conditions are needed. However, to operate effectively whilst maintaining direction, gravitational wave detectors must maintain ultra-high vacuum conditions (because sound waves cannot exist within a vacuum).

Click here to read our blog on Vacuum Technology for Space Simulation Chambers. 

 

gravitational wave detectors 1https://vacuumpumps.ir

 

Vacuum pumps are therefore an essential part of gravitational wave detection systems. As pressure ranges down to 10-09 mbar must be obtained, the most common vacuum pumps employed are magnetic turbomolecular, ion getter, cryo and “dry” fore-vacuum pumps.

The first image of black holes initiated the notion of them as a volume of space where their gravity is so extreme that neither fast moving particles nor light can escape. However, as black holes do not emit visible light, astronomers were unable to capture clear pictures of them. With advancements in vacuum technology, this is no longer the case.

 

How are black holes detected - 650 x 432https://vacuumpumps.ir

 

From a quantum perspective, the existence of black holes suggests that these “space vacuums” are not completely empty, and that in fact a black hole’s strong gravitational field fluctuates. With recent observations, as well as the progression of vacuum technology seen in telescopes and gravitational wave detectors, the nature of black holes will enable researchers to make new predictions and discoveries about the Universe and its origins.

 

 

Analytical Instruments

One of the most ubiquitous uses of vacuum pumps in the laboratory is in mass-spectrometry (MS). The pumps associated with such MS units are at the vanguard of the high-tech vacuum industry in terms of automation, control, compactness, resolution, efficiency, quiet operation, low-maintenance and cost effectiveness.

MS enables the near-immediate identification and measurement of thousands of types of molecules (e.g. metabolites, lipids, proteins, small molecules etc.), whilst also providing a detailed picture of how cells and tissues respond to drug treatment, but without the use of expensive reagents.

Furthermore, by combining MS with other technologies, it has been possible to make significant advances in a number of important medical fields including: the characterisation of advanced cell models; biomarker identification; drug distribution/tissue penetration; isotope tracing; as well as observing spatial changes in drug and metabolite distribution. Such MS developments have helped to unravel the mysteries of effective drug treatments and bio-medical science in general…and yet they all rely upon the humble vacuum pump.

A residual gas analyser (RGA) is a small MS which can monitor vacuum quality by detecting (and measuring) minute traces of impurities in a low-pressure gaseous environment. RGAs effectively identify the chemical components of the gas within a vacuum, by ionising the various molecules present to create ions before determining their mass-to-charge ratio.

 

Residual gas analysershttps://vacuumpumps.ir

 

RGAs are employed in vacuums where residual gas species need to be identified and where process conditions need to be monitored or controlled. RGAs play an important part in numerous fabricating processes, such as coating processes, vacuum furnaces and basic R&D.

KATRIN (Karlsruhe Tritium Neutrino Experiment) is a programme to measure the mass of the electron anti-neutrino, with sub-eV precision—in order to answer one of neutrino physics’ most critical questions: “What is the absolute mass of neutrinos, and why are they so important?”

 

Transport of KATRIN's main spectrometerhttps://vacuumpumps.ir

Source: Karlsruhe/KIT Katrin

Neutrinos are probably the most fascinating species of elementary particles, and indeed are referred to as the “ghost particles of the Universe”. Although neutrinos are the lightest particles in our Universe, on a grander scale they act as “cosmic architects”. In many ways one can think of neutrinos as the “DNA of matter”.

Since neutrinos have no electrical charge, their energy is measured against the shape of the electron spectrum generated by a tritium-β-decay, with measurements taken using an electrostatic spectrometer. Due to the necessity for high sensitivity, these spectrometer units have to operate in an absolute ultra-high vacuum (UHV) of nearly 10-11 mbar to avoid “false” readings generated by residual atoms that have been ionised by cosmic radiation. KATRIN’s 200-ton spectrometer with a volumeof 1,230 m3, is one of the world’s largest UHV vessel.

Another instrument used for vacuum measurement is the mercury barometer. Learn about the figure behind this here.

Wherever and whenever a vacuum needs to be created, it is essential to ensure its integrity (i.e. the “tightness” of the system), if not then time is squandered, and effort is pointlessly spent trying to create a vacuum in an “open system” which could never support a vacuum in the first place.

The only credible method for vacuum leak detection smaller than 1×10-6 mbar*l/s is with a helium leak detector of which there are four methods: the integral (sample under pressure) method requires the chamber to be placed inside a gas-proof unit–not always a possibility–and either internal or externally pressurised. Whereas in the local (sample under vacuum) method the chamber is either internally pressurised with helium or internally evacuated, with helium generously sprayed onto the surface of the chamber at likely leak prone points. In all four tests, helium enters the leak detector via possible leak points and is passed to the spectrometer for analysing.

 

Multiple Applications

Vacuum insulated glazing is an emerging technology in the field of energy efficient buildings, aimed at meeting the severe thermal performance requirements of net-zero energy windows. This is achieved by creating (and maintaining) a vacuum between panes of glass, (so that no gas/air enters this void). This maximises thermal efficiency and sound insulation.

Triple-vacuum insulated glazing (TVIG) has the ability to reduce thermal heat flow between the warm and cold-side of a window, i.e. it provides high thermal insulation (or lower U-values) by approximately 88.2% when compared with triple-air filled glazing. TVIG is constructed with three sheets of 4mm-thick glass, with an evacuated cavity of less than 10-3 mbar vacuum.

vacuum insulated buildinghttps://vacuumpumps.ir

Throughout mankind’s recent evolution, the desire to perfect transportation has galvanised scientists and engineers towards change and innovate, such as that provided by the “Hyperloop”.

Simply put, the Hyperloop utilises a vacuum in a sealed-tube along which a passenger capsule travels. Using a vacuum significantly reduces air resistance. When this is coupled with low-friction propulsion and levitation technologies (based on air cushion or magnetic levitation) within a closed system, it sends the capsule shooting “bullet-like along the rifle barrel” of the tube at ultra-high speeds, with the absolute minimum of effort.

A recent paper outlined that, in this way, the Hyperloop scheme could propel passengers at 1,200km/h along a 560km route in only 35 minutes (i.e. considerably faster than trains, and less environmentally damaging than aircraft).

Hyperloop vacuum tube design concepthttps://vacuumpumps.ir

However, an essential part of the whole Hyperloop scheme is without doubt, creating a vacuum of 1 mbar which although “not rocket science”, needs to be “scaled-up”. For example, the vacuum system of a 200km length and a 4m-diameter tube (i.e. 2.5 million m3), requires considerable expertise and understanding of vacuum physics, material knowledge, as well as vacuum simulation.

Fresh food products rapidly deteriorate unless some way can be found to preserve them. There are two different processes employing food packaging vacuums.  In vacuum microwave drying (VMD), products are heated by microwave to between 35 and 60oC whilst the vacuum pump keeps the pressure around 10 mbar. The water content then evaporates. In freeze drying (FD), the products are cooled to between -20 and -40oC and the water sublimates from the solid phase at pressures below 0.1 and 1 mbar. This process is also used for freeze drying coffee and pharmaceutical products.

Because vacuum food packing removes the air from the package before sealing it, their “shelf life” is significantly increased as almost all oxygen is removed, which restricts the growth of bacteria and fungi. Using vacuum packing, the lifetime of packed beef is about 3 weeks, while for pork it’s approximately 10 days.

shutterstock_82623328https://vacuumpumps.ir

Vacuum technology is used extensively in numerous medical applications: the manufacture of prosthetics, the coating of medical devices, magnetic resonance imaging, proton therapy and cyclotrons.

Vacuum equipment is used in two (but essentially different) parts of the “Kroll” titanium manufacturing process. Titanium is stronger and more durable than steel but is 45% lighter. Furthermore, titanium is non-ferromagnetic, which allows patients with artificial body parts (such as orthopaedic pins, rods, plates, and joints) to be safely scanned by MRIs and NMRIs. Most notably, titanium is one of the only metals that will effectively bond with human bone and tissue.

While X-rays are mainly used to examine bones, magnetic resonance imaging, (MRI) is used to look at soft tissues, such as organs, ligaments, the circulatory system, and spinal cord. Most MRI scanners employ large superconducting magnets cooled (to near absolute zero) by cryogenic fluids. Once in the superconducting state, current can flow through the (zero resistance) magnet coils indefinitely without the need for a power source. The magnet is housed in a cryostat, which is a vessel built inside another vessel. Between the inner and outer vessels, a vacuum plays a critical part in restricting heat from entering the cryogenic fluid.

shutterstock_94210177https://vacuumpumps.ir

Proton therapy is the most advanced form of radiation therapy today, but unlike traditional radiation therapy, it directly treats cancerous tissue without harming surrounding healthy tissue and organs. Proton therapy’s precise delivery of radiation is due to the way in which protons release their energy as they travel through the body. However, to create the necessary energy and velocity for treatment, protons are sent through a vacuum tube into a super high-speed accelerator known as a cyclotron, that speeds up the protons. After exiting the cyclotron, the protons continue (in the vacuum tube) through more magnet-rings that steer and focus the beam. Similar to MRI, many of the cyclotron magnets are superconducting and housed in a cryostat, with similar cooling principles using liquid helium and insulated by vacuum.

Vacuum coating is used to deposit layers of material (atom-by-atom or molecule-by-molecule) onto a solid surface within a vacuum. The deposited layers can range from a thickness of one atom, up to millimetres. Multiple layers of different materials can be employed, for example, to form optical coatings. In this way, many medical devices placed inside the human body (i.e. pacemakers, stents, epidural probes, defibrillators etc.) are surrounded with special film coatings to protect the body from the leaching of metals or plastics and protect the device from body fluids.

One of the most widely used materials to coat these devices is Parylene (which provides an ultra-thin, pinhole-free barrier) and is deposited on the medical devices through a vacuum deposition process. Parylene coatings are applied to medical devices inside a vacuum chamber using vapour-deposition polymerisation (VDP). The Parylene is deposited on the device building up one monolayer at a time, so it uniformly coats the entire device, penetrating even the device’s smallest cracks and crevices.

Ultra-centrifuges are super-powered centrifuges that rotate at speeds faster than 200,000 rpm (creating up to 100,000 g) and can separate out extremely tiny particles in solution. However, as they spin so quickly, the rotors reach extremely high temperatures causing convection currents that disrupts solid: liquid separation. To avoid this, rotors in ultra-centrifuges are housed within a vacuum. The elimination of air resistance allows the rotors to be spun at very high-speeds, aids separation, as well as reducing the power input needed.

Place sample in centrifugehttps://vacuumpumps.ir

Whether you work in the R&D field, with analytical instruments, or using industrial and process vacuum – you will need a vacuum system that ensures safe operation, is highly reliable and built-for-purpose to meet your operating requirements.